
2012 1st International Conference on Future Trends in Computing and Communication Technologies

36

Use of Collaborative Technologies for Building an Autonomous

Unmanned Ground Vehicle (UGV)

Faizan Kazi, Hassan Najeeb and Faisal Iradat

Faculty of Computer Science,

Institute of Business Administration (IBA),

Karachi, Pakistan

{faizan@faizan-kazi.com, hn.najeeb@gmail,com, firadat@iba.edu.pk}

Abstract—In this paper we present a model for an autonomous

Unmanned Ground Vehicle (UGV). Similar to existing UGVs,

the proposed UGV can be assigned GPS waypoints to navigate on

a specified path to reach destination. However, the UGV is

unique in the sense that it is intelligently controlled by an

Android device together with its onboard sensors and a Microsoft

Kinect depth sensing input device to navigate and avoid obstacles

and a Microcontroller to control the motors. Simultaneously,

long distance communications help relay commands to the

vehicle and receive status updates for any number of vehicles

around the world. To visualize the real implementation, a

simulator has also been developed and presented. Due to design

simplicity, the proposed UGV can be used for several military

and rescue applications.

Index Terms—UGV, Android, Kinect, Microcontroller, GPS,

IMU.

I. INTRODUCTION

To reduce life-risk factors during military and rescue

operations, unmanned vehicles minimize the presence of

humans in hostile and insecure environments. According to the

U.S military [1], during the period of 7 years (2005-2012) 792

lives were saved by employing robots in combat, thereby

demonstrating the effectiveness of the new technology. With

advancements in unmanned vehicle technology, new methods

for controlling and guidance techniques have to be

implemented for their effective use.

Unmanned vehicles can operate either on ground or in air.

Further, these vehicles operate without a human driver and are

either controlled autonomously [2] or semi-autonomously [3].

Consequently, the objective is to establish a path for the

vehicle to traverse. A semi-autonomous multi-modal approach

[4] has been proposed where the path is determined employing

user defined waypoints. Due to significant user interaction, the

accuracy in determining the path is not satisfactory -

approximately 63%. In unmanned vehicles, fully autonomous

control may provide better accuracy if appropriately modeled.

The fully autonomous approach has been significantly explored

in the past in order to reduce or minimize response delays and

errors. However, to the best of our understanding no one has

yet been able to control a UGV in fully autonomous mode

through an Android phone and Microsoft Kinect. Recently,

Android and Kinect have been used for enabling user

interactions primarily for gaming [5] and augmented reality

based applications [6].

In this paper a fully autonomous controlled unmanned

ground vehicle is presented using collaborative technologies

for navigation and obstacle avoidance. The model presented is

more economically feasible and requires minimal human

interaction. The rest of the paper is organized as follows: In

Section II, an overview of the UGV is presented followed by

the central controller detailed in Section III. The mission

controller is given in Section IV. In Section V the hardware

controller is presented. A simulator is presented in Section VI.

Limitations are discussed in Section VII. Finally, there is a

statement of limitations in Section VIII and the conclusion in

Section IX.

II. OVERVIEW OF THE UGV

The vehicle comprises of some major components, each

independent of the rest in the sense that the interior workings

of the components can be changed, as long as the

communications protocol remains the same. The components

consist of Server Program, Android program and Motor

control.

Figure 1- Modules with interrelationships

Each component can be considered as a “black box” i.e.

each module can be modified and even replaced with an

alternative solution, as long as the overall function and

intercommunication protocol remains same.

The mission controller (server program) allows us to

monitor vehicles and assign routes and destinations. The

central controller (Android program) resides in the UGV and

uses sensor data to make decisions regarding navigation and

obstacle avoidance. The hardware controller (microcontroller)

controls the motors and external sensors such as ultrasonic

range finders.

III. CENTRAL CONTROLLER (ANDROID PROGRAM)

The Android device is the control center of our UGV. The

Android device runs a native program written in Java. The

program’s basic function is to control the vehicle and act as a

communication hub.

The Android program does the following:

• Extracts data from the onboard sensors, including the

Accelerometer, Gyroscope, Orientation and GPS data.

• Communicates with the Server and Motor Controller

• Intelligently decides how to reach the destination.

2012 1st International Conference on Future Trends in Computing and Communication Technologies

37

Flow Chart 1 - Overall Algorithm of the Android Program

1) Wireless Communication with Server is over Bluetooth, GPRS based, etc.

2) Waypoint Navigation Algorithms

3) Obstacle Detection and Avoidance

A. Extraction of Sensor Data

The Android Device contains numerous sensors, of which

we are only using a small subset relevant to our application.

The sensor data that we have used includes [5]:

 Linear accelerometer which reports the acceleration

force in m/s2, in all three physical axes (x, y, and z)

excluding the force of gravity.

 Gyroscope which reports the device’s rate of rotation

in radian/s around all three physical axes.

 Orientation which reports the device’s rotation

around all three axes. These three items define

Heading with respect to True North, Roll and Pitch.

Roll and Pitch are useful in detecting chances of the

UGV toppling, or attitude of a UAV in three

dimensional space.

 GPS data which gives the Lat-Long (Latitude and

Longitude) position of the vehicle, and the estimates

of speed, bearing, altitude and most importantly the

GPS information in meters.

 Depth sensor data including ultrasonic data and

Kinect depth sensor data.

The screen shot of the retrieved data can be seen in Fig. 3

below.

Figure 2 - Screenshot from Android Program

This screenshot demonstrates live sensor values extracted from

the Android Device’s onboard sensors.

B. Communications Intermediary

The Android program receives data from the server,

including GPS coordinates of destination(s) and emergency

manual override commands. It periodically sends data back to

the server e.g. the sensor data and mission status information.

Furthermore, it communicates final directional commands to

the motors.

C. Decision Making Algorithms

The program uses the incoming data and computes the shortest

path to take that has least resistance.

D. Path of Least Resistance

Currently, with our development in its initial stages, we are

using a bump-and-go algorithm to detect the path of least

resistance. For example, if the motors are pushing the UGV

forward, and the linear acceleration sensors and speed

calculations report zero values, then the vehicle is stuck, in

which case it has to back out and try a new approach (track).

Once implemented, the ultrasonic depth sensors and Kinect

depth sensor will provide real time depth data. The obstacle

detection algorithm will then help pro-actively to avoid

obstacles rather than running into them and then figuring a way

out. Also, the gradient of ground surfaces will factor into

choosing the path with the gentlest slope. The flowchart of the

program is shown below.

2012 1st International Conference on Future Trends in Computing and Communication Technologies

38

Flow chart 2 - Obstacle detection and avoidance algorithm

E. Navigation

This algorithm decides the expected heading between the

current position and the destination. The purpose of this

algorithm is to keep the vehicle travelling in a straight line.

Ground vehicles tend to deviate from a straight line due to

physical issues such as varying rotation of the individual

wheels due to fluctuations in motor output, varying surface

conditions such as bumps and differing traction on individual

wheels.

IV. HARDWARE CONTROLLER (MICROCONTROLLER)

The microcontroller functions as a bridge between the

Android program and motors and external electronics. The

Android program provides the microcontroller the speed and

direction to run the motors accordingly, whereas the

microcontroller manages the electronic details.

The microcontroller controls the motors with the help of an

amplifier circuit which we call the motor control board. The

motors draws a lot of power while running, which the

microcontroller is unable to provide. Therefore, to overcome

this problem we use the motor control chip (L298N) dual

motor driver (two motors can be attached) for each chip.

The ultrasonic depth sensors are also connected to the

microcontroller which provides depth information to the

Android program.

An Android IOIO Microcontroller is being used to

implement the logic. The IOIO microcontroller communicates

with the Android device over USB interface, with the ability

to connect wirelessly via Bluetooth. The Android IOIO

libraries are used to maintain communication with the

microcontroller while it is plugged to the Android device.

V. MISSION CONTROLLER (SERVER PROGRAM)

The Server program is the equivalent of Mission Control,

where the user can view the real time status of any number of

vehicles in the field. The user also has the ability to control the

destination, waypoints and routing of any particular UGVs.

The server collects data, charts it, logs it, offers emergency

manual overrides and plots the position and status of vehicles

on Google maps.

Data received from the remote Android program includes

sensor data and mission status. The rate of data “packets”

received per second is displayed. We are currently

maintaining a data rate of more than 4 packets per second so

that the data is grouped closely together. This will allow future

data mining and in depth analysis of the data so that nuances

and trends in sensor data readings can be observed.

Another page in the program shows us Google Maps, and

display the real time position and heading of vehicles. It also

helps visualize the accuracy of the latest GPS reading from a

vehicle with a circle drawn around the estimated position.

Included is the ability to track the estimated distance to the

destination and time it would take to reach.

With the help of the Google Maps API [11], street

directions to destinations can be retrieved, where road and

routing data is available on the Google servers. This is useful

during initial testing to make sure the vehicle is road worthy

and gets to the destination with the best street route selected if

one exists.

New Directions and Waypoints can be assigned to vehicles

on the fly with a simple two click procedure by clicking on the

map and assigning that point a new destination / waypoint.

The Server program also features emergency manual

override to stop or redirect the vehicle as required. This is

done with regards to standard UGV implementations [12].

A. Logging and Charting of Sensor Data

The screenshot (see Fig. 3) from the Server Program

shows raw logging of data on the left hand side. Packets

received per second are displayed above the logging box.

Parsed current data, along with line charts of selected items

such as gyro, linear acceleration and rotation vector data can

also be viewed on the right side.

The large graph at the bottom is configurable, and the data

to be plotted can be selected from the dropdown above the

chart on the right.

2012 1st International Conference on Future Trends in Computing and Communication Technologies

39

All the graphs contain sequential numbered data points on

the x-axis, with their respective sensor values on the y-axis in

terms of m/s2 or radian / s.

An empty text box in the bottom half can be selected, and

any key input from the left, right, up or down keys will make

the Vehicle enter manual override mode. Similarly pointing

the mouse over the orange boxes will make the vehicle move

forward and left, forward, forward and right, right, back and

right, back, back and left and left in clockwise order starting

from top left. The green box at the center stops all motor

movement. Keyboard number pad keys can also be used for

gaining quick control over the vehicle.

Figure 3 - Vehicle Data Logging and Charting

B. Real-time Mapping and Routing of Vehicle

The screenshot (see Fig. 4) from the server program shows

Google Maps plot. Double clicking the Map updates the

destination latitude and longitude boxes shown at the bottom

left of the figure. The selected point can then be added either

as a waypoint or destination by selecting the appropriate radio

button and clicking the Add button.

In case the destination change, the Google Maps API is

queried for street routing directions if available, and are used

to help guide the vehicle. In this case, Google Maps routing

was used, and Waypoints are shown in Orange, and the

Destination in Green.

The position and heading of the vehicle is represented by

the small black arrow. The circle around the arrow represents

the GPS reading’s accuracy. Meanwhile, the red area shows

the area the vehicle has moved earlier.

Numerical data at the bottom represents the straight line

distance from the current position to the destination, route

distance and time from Google Maps, estimated time to

destination at the current speed reported by GPS and required

heading to destination.

Figure 4 - Server Program showing Mapping

VI. SIMULATOR

The Simulator that has been developed is a very basic one.

It serves to generate random obstacles, represented by lines of

varying length, tangential to the radar / depth sensor circle

around the UGV represented by a red circle. The objective is

to test and virtually visualize obstacle avoidance and

navigation taking place through simulator. This will enable

one to evaluate performance of the algorithms from the logs.

The position of the UGV stays constant in the center of the

screen while the obstacles are drawn on the screen as the UGV

moves. As soon as an obstacle comes within the range of the

sensors, the UGV detects it and uses an obstacle avoidance

mechanism to move further without crashing into it.

The simulator is built on top of graphics libraries provided

by the .Net Framework APIs. The screenshot of the simulator

is given in Fig. 5.

Figure 5 - Simulator Program demonstrating randomly generated obstacles

VII. LIMITATIONS

Currently the UGV is using the bump-and-go method

described in Section III-D and is relying heavily on Google

Maps to reach its destination. Eventually once the Kinect depth

sensor is implemented, real time depth data can be gathered. It

will then be possible to detect obstacles and avoid them rather

than running into them. The UGV would be able to move

2012 1st International Conference on Future Trends in Computing and Communication Technologies

40

around in an unknown terrain using depth map data without

crashing into any obstacle.

Although as mentioned in [7] the Kinect sensor cannot

detect objects while it is moving itself. To address this issue,

the UGV will stop or slow down to a very low speed at which

we can record the depth map and then make an intelligent

decision to move ahead.

Figure 6 – Aerial view of our modified remote control car based test bed.

VIII. FUTURE WORK

Our current research includes integrating Kinect depth

sensor with the UGV. The Kinect sensor is used to detect

obstacles in real time. Kinect is a cheap sensor that provides us

with depth map images, with a field of view of 57 degrees and

maximum range of 3.5 meters [10].

The UGV will use the Kinect to obtain depth data while

performing a mission. The depth data will be processed to

obtain an obstacle-free path for the UGV to travel [7].

IX. CONCLUSION

In this paper we present a small scale project to test the idea

of using an Android device to operate an unmanned vehicle

autonomously. The proposed UGV will be able to perform

risky tasks of rescue, supply, surveillance and military

operations (exploring unknown terrain including mine-filled

areas) and would be cost-effective and efficient as well. Future

work includes development of an Unmanned Air Vehicle

(UAV) or an autonomous drone that would be very cost

effective for a number of applications where human reach is

not possible due to a hostile and insecure environment.

REFERENCES

[1] US Military, “Robotic Systems Joint Project Office (RS JPO).”

2012.

[2] S. Parsons, “Autonomous Robots: From Biological Inspiration

to Implementation and Control by George A. Bekey, MIT Press,

ISBN 0-262-02578-7,” Knowl. Eng. Rev., vol. 20, no. 2, pp.

197–198, 2005.

[3] M. M. Rohde, V. E. Perlin, K. D. Iagnemma, R. M. Lupa, S. M.

Rohde, J. Overholt, and G. Fiorani, “PointCom: semi-

autonomous UGV control with intuitive interface,” p. 69620G–

69620G, Apr. 2008.

[4] S. Mortezapoor, M. Taale, and S. Soleimani, “A Multi Modal

Interface Approach to Control an Unmanned Aerial Vehicle,”

University of Fribourg, Switzerland, 2012.

[5] R. Meng, J. Isenhower, C. Qin, and S. Nelakuditi, “Can

smartphone sensors enhance kinect experience?,” in Proceedings

of the thirteenth ACM international symposium on Mobile Ad

Hoc Networking and Computing, Hilton Head, South Carolina,

USA, 2012, pp. 265–266.

[6] S. Warade, J. Aghav, P. Claude, and S. Udayagiri, “Real Time

Detection and Tracking with Kinect,” in Proceedings of the

ICCIT 2012, Bangkok, Thailand, 2012, pp. pp. 86–89.

[7] A. Khan, F. Moideen, J. Lopez, W. L. Khoo, and Z. Zhu,

“KinDectect: kinect detecting objects,” in Proceedings of the

13th international conference on Computers Helping People

with Special Needs - Volume Part II, Linz, Austria, 2012, pp.

588–595.

[8] B. Wei, J. Gao, K. Li, Y. Fan, X. Gao, and B. Gao, “Indoor

mobile robot obstacle detection based on linear structured light

vision system,” in Proceedings of the 2008 IEEE International

Conference on Robotics and Biomimetics, 2009, pp. 834–839.

[9] C. Zheng and R. Green, “Feature Recognition and Obstacle

Detection for Drive Assistance in Indoor Environments,”

University of Canterbury, Christchurch, New Zealand.

[10] http://kotaku.com/5576002/here-are-kinects-technical-specs,

accessed 26 October 2012

[11] https://developers.google.com/maps/

[12] Intelligent Ground Vehicle Competition Rules

http://www.igvc.org/DRAFTIGVCRules2013DRAFT.docx

